
App game kit mobile


Getting started/tutorial ( 8 april 2018 )


By Rudy van Etten (pakz001)


I am using the ios version on a ipad 2018.




Note: currently there are two onscreen 
keyboards. The native ios keyboard does not 
work correctly. When in the editor on the right 
bottom side of the screen there is a icon for 
the custom screen keyboard. Use this one 
instead. 

Note: there might be some bugs with agk 
mobile for ios. Sometimes it may get a 
messed up screen. Closing the app and 
restarting it fixes it. 

Hello World

Choose: create new project.


Between the lines. Do and loop below the line print(screenFPS()) add the following line.


Print(“Hello World”)


Press the run button and you should see the hello world line been printed/drawn to the screen.


Note: to exit a program hold your 
finger in the top right corner of the 
screen for around 3 seconds. 

Drawing a line 

To draw a line to the screen you can use the Drawline command. It takes a number of inputs.


Drawline(x1,y1,x2,y2,red(0..255),green(0..255),blue(0,255))


Drawline(0,0,50,0,255,0,0)


The above line draws a line from coordinates 0,0 to coordinates 50,0 using the red color.


Create a new project and below the line Print(screenFPS()) add the Drawline command and 
experiment with it.




Different resolutions


You might notice when you draw something that you have not told app game kit what resolution 
you want. Let us learn how to do this now.


SetVirtualResolution(Width,Height)


Width for example could be 320 and Height could be 480. You can place this command 
somewhere in your code when you set up your project.(top of the code)

When you have set the resolution you will be able to use drawing commands like Drawline with 
the resolution you have given.


For loops


A For loop is a way to do a lot of useful things with. You probably wil be using it a lot.


For i = 0 to 10

     Print(i)

Next i


Above we create our for loop. After the for command we see the character i. This is a variable 
that wil be used to store and keep track of the numbers used by the for loop. In this case we tell it 
to count from 0 to 10. We print the number (i) on the screen 11 times(0 including) The next 
command followed by the i variable is used to tell the program back the next for. When the i is in 
its last value the code continues.


For loops and integer arrays


A array is a piece of memory that can store information. Here I wil show how to create a Integer 
array and then print the data to the screen.


Note: an Integer is a number. 123 is a integer 
value. “Abc” is not an integer value. 123.0 is 
also not an integer value. 

Dim test[10] As Integer 

Test[0] = 10

Test[10] = 15 

Place the lines above in an new project above the Do command. (The part where we update and 
draw things on the screen.


Place the lines below in the main part of the program. (After the Do command and below the print 
screenFPS part) 


For i = 0 to 10

    Print(Test[i])




Next 

When you now run the code you should see a series of numbers on the screen. One should be a 
10 and a series of 0’s and a 15.


Globals


A global command is used to tell agk that a variable can be written and read from anywhere in 
your code.


Global abc As Integer 

You usually create your global things at the top of your code.


abc can now be used to store a number anywhere and be read anywhere.


If and then


An if command is one of the most valuable commands. It can be used to test situations like if an 
variable is of a certain value. The then command is used to do something after an condition like 
if.


If a = 10 then a = 5 


Above we tell agk to check if the variable a is 10 and if so change it to 5.


Note: Agk is short for App Game Kit 

Random

The command Random is used to create a random number. 


Local a As Integer

a = Random(0,10)

Print(a)


The code above can be put in the do loop section of a new project. We create a Integer variable 
named a and we put a number between 0 and 10 in it and print it on the screen. 

User touching the screen (touch up) 
The command GetPointerPressed() is used to see if the user touched the screen. 1 finger on the 
screen and the off again.




If GetPointerPressed() = 1 

    Print(“finger released”)

Endif 

If you put the code above in a empty project below the print(screenFPS) line and run it then on 
the screen every time you touched the screen a message wil be printed,


User finger on screen and coordinates (touch down x and y)

The command GetPointerState() is used to see when the user his finger is on the screen. The 
commands GetPointerX() and GetPointerY() contain the last x and y coordinates where the finger 
was located on the screen.


Print(GetPointerState())

Print(GetPointerX())

Print(GetPointerY())


Place the code above in a new project below the print(screenFPS) line and run and touch the 
screen to see the touch commands function.


Gosub (goto subroutine)


Gosub is a command that tells the program to jump to a particular part in you code. This part in 
the code needs a label and a return part. When the return command word is read then the 
program returns to the code where the gosub was called.


Gosub test


Place the line above in a new project below the print(screenFPS) line.


Test:

Print(“test”)

Return 

Place the 3 lines above at the bottom of the empty project. Make sure it is not placed inside other 
parts of code like inside do loop sections. Notice the label Test has a : character behind it.


Run the code and you should see the word test printed on the screen.


Create and display text on the screen.


Createtext(number,text) is a command used to create text that wil be drawn on the screen. Each 
number(1..x) is a text label and the text is a string$. You need the settextposition(number,x,y) to 
place it on the screen. The settextsize(number,size) is used to set its size.


Create a new project and in the code above where the main loop begins( the do command) put 
the following lines.


Createtext(1,”game over man”)




SetTextSize(1,20)

SetTextPosition(1,0,50)


Press run and you should see the text on the screen.


Detecting finger on text

The text commands come with a feature that let it detect when the finger touched the text. See 
below.


CreateText(1,”press me”)

SetTextSize(1,20)

SetTextPosition(1,0,50)


Place the 3 lines above above the main loop in a new project. Place the following lines inside the 
main loop(below the print(screenFPS)) line.


If GetPointerPressed() = 1

  Hit = GetTextHitTest(1,GetPointerX(),GetPointerY())

  If Hit = 1 then SetClearColor(Random(0,255),0,0)

  Print Hit

EndIf 

When run you can press your finger on the text label and the you should see the screen color 
change.


Creating a sprite and moving it


We can create sprites with agkmobile. Here I wil show how you can create a empty sprite, put it 
on the middle of the screen and move it continuously from the left side of the screen to the right 
side.


Sp = CreateSprite(0)

SetSpriteY(Sp,50)

Local x As Integer


Put the 3 lines above here above the main loop of a empty new project. Put the 3 lines below here 
below the print(screenFPS()) in the main loop.


SetSpriteX(Sp,x)

x=x+1

If x>100 then x=0


CreateSprite creates a new sprite object. The Sp variable wil contain the sprite number. 
SetSpriteX and SetSpriteY are used to position a sprite on the screen.


Converting integer to string (Str)

The command Str() can be used to convert a integer variable into a string.




Local test As Integer

test = 150

Print(“The number is : “ + Str(test))


Put the 3 lines above inside the main loop of a new empty project. Below the Print(screenFPS()) 
line. When run you wil see the number printed to the screen.


Comments in the code

We can put all sorts of text inside our code file without it causing errors. This to explain things or 
even to disable certain code. We can add a Rem or // or ‘ on the most left side of a line to tell agk 
that this line is comment.


The 3 lines below here are comments.


Rem this is a comment

// this is a comment

‘ this is a comment


Types (creating and printing to the screen)

Types are something we can use that can hold data. Somewhat like arrays but with types you can 
hold different data types as integers and strings and floats at the same time.


Put the code below in a new empty project. Above the main loop that starts at the do command.


// this is our type. It starts with the Type keyword and ends with the EndType keyword. 
Type test

  X As Integer

  Y As Integer

EndType 

// here we create an array as test with 5 types.

test as test[5]


// here we put random values inside the x and y variables.

For i = 1 to 5

  test[i].x = random(0,10)

  test[i].y = random(0,10)

Next i


Put the following lines inside the main loop. Below the print( screenFPS()) line.


// here we print the type variables contents on the screen 
For i=1 to 5

  Local a As String 
  a = test[i].x+”,”+test[i].y

  Print(a)

Next i


When you run the project you should see a series of numbers on the screen.




Functions

Functions are sections of code that can take optional input and optionally return data.


Function test()

  Print(“test”)

Endfunction 

The 3 lines above show how a function is set up. The code above can be called or executed from 
anywhere in you program by using its name test()


Function test(a As Integer)

  Print(a)

EndFunction 

The code above shows a function that takes 1 input. In this case a number which is used to print 
to the screen when the function is executed.


Function test()

EndFunction “hello”


Print(test())


The code above shows you how to create a function that returns data. In this case a string. We 
could put a variable there in stead also. The print line below that function shows you how a 
function like that could be used.


Drawing on a image

When we look at a game like space invaders then we can see that when a alien bullet hits a 
bunker this bunker gets damaged. In agk we could create a image with the drawing of a bunker 
and slowly erase it piece by piece when it gets hit.


We can use the following code to create and render to an image.


// create image 1 with width and height of 32 
Createrenderimage(1,32,32,0,0)

// here we tell agk to use the drawing commands on image 1 
Setrendertoimage(1,0)

// here we draw two lines. 
Drawline(0,0,32,32,255,0,0)

Drawline(0,32,32,0,255,0,0)

// tell agk to draw to the regular screen 
Setrendertoscreen()

// create our new sprite with our new image 
Createsprite(1,1)


The section of code above should be placed in a new project above the main loop. The next few 
lines below should be placed inside the loop below the print(screenFPS()) line.


// put sprite 1 on a random location of the screen. 
Setspritex(1,random(0,100))

Setspritey(1,random(0,100))




When everything is right then after you press run you should see a sprite being drawn on the 
screen which is jumping around.


Creating a 3d box and rotating it

To create a 3d box we can use the command createobjectbox(width,height,depth)


The line below should be placed above and outside the main loop. This line creates a 3d box. The 
object can be found/adressed with its name Box.


Box = createobjectbox(2,2,2)


The line below is used to rotate a object locally around its y axis. Place this line in the empty new 
project where the above lines also should be below the print fps line.


Rotateobjectlocaly(Box,2)


The number 2 is the amount rotated.


If all went wel and when pressed run you should see a box rotating on the screen.


Shooting a sprite after touch

Shooting is something that in videogames happens a lot. Here we are going to show how to shoot 
a bullet or laser from the bottom of the screen. This sprite we create for that travels from the 
bottom to the top of the screen after a screen touch.


Create a new empty project and look for the line in the code that says do. Above this line add the 
5 lines below here.


Rem Create our bullet or laser sprite. 
Sp = createsprite(0)

Setspritesize(sp,4,8)

Setspriteposition(sp,48,100)

Shot = 0


Inside the main loop(below the do command and below the print(screenFPS()) line) add these 
following lines.


Rem if not shot yet and touched the screen 
If getpointerpressed()=1 and Shot=0

  Shot = 1

Endif 

Rem if bullet is active(traveling)

If Shot = 1

  Setspritey(sp,getspritey(sp)-3)

Endif 

Rem if sprite if above top of screen 



If getspritey(sp) < -10

  Rem disable moving the sprite and restore default position

  Shot = 0

  Setspritey(sp,100)

Endif 

If you are here and have pressed the run button and if everything went right you should be able to 
shoot 1 sprite at a time with a touch.


Sprite collisions

Finding when a sprite collides with another sprite is not difficult at all. We can use the command 
getspritecollision(sprite1,sprite2) for this.


Create a new empty project and type or copy the following 6 lines below here above the do 
command and below the usenewdefaultfonts(1) line.


Sp1 = createsprite(0)

Sp2 = createsprite(0)

Setspritesize(Sp1,10,10)

Setspritesize(Sp2,15,10)

Setspriteposition(Sp2,50,50)

A as string


Type or copy and paste the following 9 lines in the main loop of the project. Below the 
print(screenFPS()) line.


Print(“move finger on screen to move sprite”)

Setspritex(Sp1,getpointerx())

Setspritey(Sp1,getpointery())

If getspritecollision(Sp1,Sp2) = 1

  A = “sprites colliding”

Else 
  A = “no sprites colliding”

Endif 
Print(A)


When you run the program you can move you finger on the screen and 1 sprite wil stay under 
your finger. When the 2 sprites that are on the screen touch there wil be a collision.


Arrays (one and multidimensional) and length


Place the following 3 lines in a new empty project below the usenewdefaultfonts(1) line.


Dim test[] as integer = [1,2,3,4]

Dim test2[1,2] as integer 

Dim test3[1,2,3] as integer


Place the following print lines in the main loop. Below the print(screenFPS()) line.


Print(“array test length”)

Print(test.length)




Print(“array test2 length”)

Print(test2.length)

Print(“array test2[0] length”]

Print(test2[0].length)

Print(“array test3 length”)

Print(test3.length)

Print(“array test3[0] length”)

Print(test3[0].length)

Print(“array test3[0,0] length”)

Print(test3[0,0].length)


When you run the program then you wil see the length information of the created arrays on the 
screen. Change the numbers in the dim lines to see them change when run.


Note: only single dimension arrays can have 
default values. 

Array insert and remove

For algorithms like the a* (astar) pathfinding or floodfilling it is useful to be able to remove and 
insert data into a list. Agk makes this possible with the insert and remove commands for arrays. 

Type or copy and paste the following 9 lines in a new empty project below the 
usenewdefaultfonts(1) line.


Dim test[] as integer = [1,2,3,4,5]

Rem insert a new item with value 6 at end of array

test.insert(6)

Rem remove the first item from the array

test.remove(0)

Rem remove the last item from the list

test.remove()

Rem insert value 10 at array position 1

test.insert(10,1)


Type or place the following line in the main loop below the print(screenFPS()) line.


For i = 0 to test.length

    Print(test[i])

Next i


If you run the code you should see a series of numbers. 2 10 3 4 5 


Insert and types and arrays


Place the following lines (to and with endfunction a) in a new empty project. Place these below 
the usenewdefaultfonts(1)


Rem create a type called test 
Type test

    X as integer

    Y as integer




Endtype 

Rem make a empty array called test2 containing the test type 
Test2 as test[]


Rem insert 2 new test types into the test2 array 
Test2.insert(newtest())

Test2.insert(newtest())

Test2[0].X = 10

Test2[1].X = 20


Rem this function creates a new test type and returns it. 
Function newtest()

    A as test

Endfunction A


Place the following 3 lines in the main loop below the print(screenFPS()) line.


For i = 0 to Test2.length

    Print(Test2[i].X)

Next i


If you run the code then you should see two numbers below the frames per second number. 
These numbers, the x we set should be 10 and 20.


Modifying a array using a function (by reference)


Create a new empty project and below the usenewdefaultfonts(1) line add the following lines.


Dim test[] as integer = [1,2,3,4,5]


Rem here we create a function that can modify a array. Note the ref word. 
Function inc_array(a ref as integer[])

    For i = 0 to a.length

        a[i] = a[i] + 1

    Next i

Endfunction 

Rem here we move the array into the function to have it be modified. 
inc_array(test)


Add the following 4 lines to the main loop. Below the do and print(screenFPS()) lines.


Rem print the contents of our test array to the screen 
For i = 0 to test.length

    Print(test[i])

Next i


If everything went right then the default values with which the test array were created should be 1 
value higher then before.




Arrays and tilemap using default values.

A tilemap is a piece of memory that contains information about the makeup of our screen. With it 
we draw tiles on the screen. It has a width and a height. Each location has a number telling which 
tile we should draw. Location 0,0 in the tilemap could be the value of 1 and when we have a 
tilemap drawn on the screen from top left going to the bottom right in typewriter style means the 
top most tile is tile number 1. Each tile we have could be a part of a drawing that together form a 
image of for instance a millitary base.


Below here I am going to show you how to draw a small map on the screen.


Create a new empty project and type or paste the lines below here until the endfunction 
underneath the usenewdefaultfonts(1) line.


Rem we will create a map with width and height of 5 
Global mapwidth=5

Global mapheight=5

Rem the width and height of the crosses here 
Global tilewidth=16

Global tileheight=10

Rem here we create our map array. Note the y is first 
Dim map[mapheight,mapwidth] as integer

Rem here we create our map tiles. 1 is a cross, 0 is nothing. 
map[0] = [0,1,1,1,1,0]

map[1] = [1,1,0,0,1,1]

map[2] = [1,0,0,0,0,1]

map[3] = [1,0,0,0,0,1]

map[4] = [1,1,0,0,1,1]

map[5] = [0,1,1,1,1,0]

Rem our drawmap function 
Function drawmap()

    for y=0 to mapheight

    for x=0 to mapwidth

        Rem if inside our array we read a 1 value the. Draw our tile. 
        If map[y,x] = 1

            Local x2 as integer

            Local y2 as integer

            x2 = x * tilewidth

            y2 = y * tileheight

            Drawline(x2,y2,x2+tilewidth,y2+tileheight,255,0,0)

            Drawline(x2+tilewidth,y2,x2,y2+tileheight,255,0,0)

        Endif

    Next x

    Next y

Endfunction 

Add the line below here into the main loop of the project. Below the print(screenFPS())


drawmap()


If everything went right then you should see a series of crosses drawn to the screen. If you modify 
the array( 0 and 1’s) then the crosses will change also.




Bouncing sprite

Gravity in games is something you might see a lot in the games you play. A simple way of creating 
gravity for 2d games is shown below here.


Create a new empty project and below the line usenewdefaultfonts(1) place the following lines.


Rem how fast we bounce upwards 
Force# = 6.0

Y = 80 // location of the sprite

My# = Force# // set the increment

Direction = 1 // 1=upwards, 2=downwards

Sp = createsprite(0)


Place the following lines in the main loop. Below the do command and below the 
print(screenFPS()) 

Rem position the sprite 
Setspriteposition(Sp,50,Y)


Rem here we bounce the sprite 
If Direction=1 // going up

    Y=Y-My#

    My#=My#-1

    Rem if there is no more upward force then change direction

    If My#<0 then Direction=0

Else // going down

    Y=Y+My#

    My#=My#+1

    Rem if we hit the ground 
    If Y>80

        Y=80 // align on the ground

        My#=Force# // set new upward force

        Direction=1 // change direction

    Endif

Endif 

If everything went right then you will see a sprite bouncing on the screen. It goes from the bottom 
of the screen to the top and back again. It keeps bouncing forever until you close the program by 
holding your finger on the top right location of the screen for a couple of seconds.


Drawsprite and tilemap


Drawsprite draws the image of a sprite underneath its current location. You can draw a tilemap 
with this method. Create a sprite for each unique tile and while you are drawing your map tile. 
Position the relevant sprite on that location and draw it. This way you do not need a sprite for 
each tile in the map.


Place the lines below here in a new empty project. Place these lines below the 
usenewdefaultfonts(1) line.


Sp1=createsprite(0)

Sp2=createsprite(0)




Setspritesize(sp1,16,16)

Setspritesize(sp2,16,16)

Setspritecolor(sp1,255,0,0,255)

Setspritecolor(sp2,0,255,0,255)


Rem create our array with the tile contents 
Dim Map[5,5] as integer

Map[0]=[1,1,1,1,1,1]

Map[1]=[0,0,0,0,0,0]

Map[2]=[1,1,0,0,1,1]

Map[3]=[0,0,0,0,0,0]

Map[4]=[1,1,1,1,1,1]

Map[5]=[1,0,1,0,1,1]


Place these lines in the main loop of our new empty project. The loop starts at the line that has 
the do command on it. Place the code below here below the print(screenFPS()) line.


Rem make the sprites visible 
Setspritevisible(Sp1,1)

Setspritevisible(Sp2,1)

Rem draw our tilemap 
For y=0 to Map.length

For x=0 to Map[0].length

    If Map[y,x] = 1

        Rem set sprite to tile position 
        Setspriteposition(Sp2,x*16,y*16)

        Drawsprite(Sp2) // draw the sprite to the screen

    Endif 
    If Map[y,x] = 0

        Rem set sprite to tile position 
        Setspriteposition(Sp1,x*16,y*16)

        Drawsprite(Sp1) // draw the sprite to the screen

    Endif

Next x

Next y

Rem make the sprites invisible 
Setspritevisible(Sp1,0)

Setspritevisible(Sp2,0)


If everything went allright then you will see a tilemap on the screen after you pressed the run 
button.


Moving a sprite towards the last touched position - angle


If you want to make a game where you control a verhicle on the screen then take a look at this. 
Here the code creates a sprite that moves towards the last touched position on the screen in a 
straight line. The sprite rotates into the direction he is headed.


Note: the atanfull() command needs a value 
of 90 to be taken off to get it to move into the 
right direction. 



Place the next 7 lines in a new empty project underneath the usenewdefaultfonts(1) line.

Rem sprite x and y position 
X# = 50

Y# = 50

P = createsprite(0) // create our sprite

Setspritesize(P,10,5)

Rem our variable that holds the angle 
A# = 0


Place the next block of code in the main loop. This is below the do command and below the 
print(screenFPS()) line.


Print(“touch the screen to move the sprite towards it”)


Rem here we move the sprite 
Rem first we get the coordinates of the center of the sprite 
X2# = X#+getspritewidth(P)/2

Y2# = Y#+getspriteheight(P)/2

Rem if the distance between the center and destination is great enough 
If (abs(X2#-Getpointerx())+abs(Y2#-getpointery())) > 10

    Rem get the angle to head towards 
    A# = atanfull(getpointerx()-X2#,getpointery()-Y2#) - 90

    Rem update the sprite coordinates 
    X# = X# + cos(A#)

    Y# = Y# + sin(A#)

    Rem update our sprite 
    Setspriteposition(P,A#)

    Setspriteangle(P,A#)

Endif 

If everything went allright and when you then press run you wil be able to move a sprite around 
the screen. Press anywhere to move him.


Double tapping the screen


Using the command getmilliseconds() we can get the time passed since the start of the program. 
With this command we can also detect if we pressed the screen within a certain time. Double 
tapping could be used for initiating a jump or shooting something.


Create a new empty project and in the top of the code velow the line usenewdefaultfonts(1) place 
the following lines.


Rem with this variable we store the time after a press. 
Global taptime as integer

Rem this variable if 1 means we had a double jump. 
Global doubletap as integer

Rem how long between two presses should be a double tap 
Global tapdelay as integer

tapdelay = 300




Place the following lines inside the main loop. Below the do and print(screenFPS()) lines.


Print(“Touch the screen twice fast”)

Rem if we had or had no double tap 
If doubletap = 1

    Print(“double press detected”)

Else 
    Print(“no double touch detected”)

Endif 

Rem here we check if the user touched the screen 
If getpointerpressed()

    Rem if the touch is within a certain time of last touch 
    If getmilliseconds() < taptime

        doubletap = 1// we detected a double tap

    Else

        Rem if there was no double tap then store time plus time 
        Rem in within a double press can occur. 
        taptime = getmilliseconds() + tapdelay

        doubletap = 0// only one press detected

    Endif

Endif 


If everything went right and when you run the program then double pressing the screen gets 
detected.


Getspritehit() and setspritecoloralpha()


You probably wil want to know how to find the sprite you touched on the screen. Also making a 
sprite transparent is useful. 


Note: Sprites can be used as buttons and 
other gui and hud related imagery. 

Place the 3 lines below in a new empty project below the usenewdefaultfonts(1) line


S = createsprite(0)

Setspritesize(S,100,100)

Setspritecoloralpha(s,125) // 0(invisible)....255(not transparent)


Place the 5 lines below here in the main loop below the do and print(screenFPS()) lines.


Print(“touch the sprite(top of screen)”)

Print(hit)


If getpointerpressed()

    hit=getspritehit(getpointerx(),getpointery())

Endif 



Jumpgame

App game kit can be used to create games. Let us make a simple game. Here we have a game 
where there are objects coming from the right of the screen. We can jump with our player who is 
on the left side of the screen. When the player hits a object the score is reset to 0.


Place the code below in a new empty project below the usenewdefaultfonts(1) line.


Dim s[1]

For i=0 to 1

    s[i]=createsprite(0)

    Setspriteposition(s[i],200,60)

Next 

Dim time[1]

time[0]=getmilliseconds()+100

time[1]=getmilliseconds()+200


P=createsprite(0)

Setspritey(P,60)

Pjumptime=0

Pjumpwaittime=0


The line below here should be placed in the main loop. This is below the do and below the 
print(screenFPS()) lines.


Print(“touch to jump”)

Print(“score: “+str(Score))


Score=Score+1// increase our score


Rem handle the player jump 
If Pjumptime>0

    Pjumptime=Pjumptime-1

Else 
    Setspritey(p,60)

    If Pjumpwaittime>0 then Pjumpwaittime=Pjumpwaitime-1

Endif 

Rem if touch the screen then jump the player 
If getpointerpressed() and Pjumptime=0 and Pjumpwaittime=0

    Setspritey(p,40)

    Pjumptime=30

    Pjumpwaittime=10

Endif 

Rem move the sprites to the left and check collision 
For i=0 to 1

    If getspritecollision(p,s[i]) then score = 0

    If getmilliseconds() > time[i]

        Setspritex(s[i],getspritex(s[i])-3)

        If getspritex(s[i]) < -10

            time[i] = getmilliseconds() + random(200,1500)

            Setspritex(s[i],200)

        Endif




    Endif

Next i


If everything went allright then you should have a little game. Press the screen to jump over the 
object that are coming your way. You could add new features to this game like graphics and 
music and other things.


Highest number in array.


For certain algorithms amongst others you need to know if a certain index in a array contains the 
highest value. Here I show you a way to find the index number containing the highest value.


Note: in the astar(a*) algorithm code like here 
is used. 

Place the following 5 lines in a new empty project below the usenewdefaultfonts(1) line.


Dim number[] as integer 
Rem insert a series of numbers into array. 
For i = 0 to 10

    number.insert(random(0,500))

Next 

Place the lines below here inside the main loop. This is below the do command and the 
print(screenFPS()) lines.


Rem print the numbers from the array 
For i = 0 to number.length

    Print(“index: “+str(i)+” = “+ str(number[i]))

Next 

Rem find the highest number index 
Highest=0

Highestindex=0

For i=0 to number.length

    If number[i] > Highest

        Highest=number[i]

        Highestindex=i

    Endif

Next 

Print(“index: “+str(Highestindex)+” has the highest number.”)


If everything went allright then when you run the code you should see a list in numbers on the 
screen. The last line tells which index has the highest number.


Screen transition effect using sprites.


This transition effect is real easy to make. You create 10x10 spites and place them on the screen 
so they cover everything and make them invisible. Then one by one you make them visible.




Place the lines below here in a new empty project underneath the line that reads 
usenewdefaultfonts(1)


Rem create our sprites 
Dim Spr[10,10]

For y = 0 to 10

For x = 0 to 10

    Spr[x,y] = createsprite(0)

    Setspritesize(Spr[x,y],10,10)

    Setspriteposition(Spr[x,y],x*10,y*10)

    Setspritevisible(Spr[x,y],0)

Next x

Next y


Place the lines below here in the main loop. Below the do and print(screenFPS()) lines.


Rem here we do the transition effect 
Exitloop = 0

Cnt = 0

Repeat 
    Rem get random position 
    X = random(0,10)

    Y = random(0,10)

    Rem if position sprite is invisible then.. 
    If getspritevisible(Spr[X,Y]) = 0

        Setspritevisible(Spr[X,Y],1)

        Exitloop=1

    Endif

    Cnt = Cnt + 1

Until Exitloop = 1 or Cnt > 100


If everything went right we should see the screen transition effect as soon as we press the run in 
agk.


Flooding a map with distance from point (pathfinding)






Letting a enemy player find the player is pretty simple to do. We create a map and put a value of 1 
at the location where the enemy is supposed to go. We then flood the map. Below is code that 
shows how this is done.


Place the lines below here in a new empty project below the usenewdefaultfonts(1) line. Include 
the function code block(ends at endfunction)


Dim map[10,10]

map[5,5]=1 // our destination is of value 1 ( change 5,5 for diff.)

Floodmap() // here we flood the map with distances


Rem here we create text labels with the distance values that 
Rem we display on the screen. 
Dim t[10,10]

For y=0 to 10

For x=0 to 10

    t[x,y]=createtext(str(map[x,y]))

    Settextposition(t[x,y],x*10,y*10)

Next x

Next y


Function Floodmap()

    Exitloop = 0

    Rem we look for a number 1 to start flooding 
    Num = 1

    Rem we check above,right,bottom and left of position

    Dim mx[] as integer=[0,1,0,-1]

    Dim my[] as integer=[-1,0,1,0]

    Rem loop until the entire map has been filled with distances 
    While Exitloop = 0

        Exitloop=1

        For y=0 to 10// 10 is the size of the array

        For x=0 to 10

            If map[x,y] = Num

                For ii=0 to mx.length

                    x2 = x+mx[ii]

                    y2 = y+my[ii]

                    Rem if coordinates are outside map bounds then skip loop

                    If x2<0 or y2<0 or x2>10 or y2>10 then continue 
                    If map[x2,y2] <> 0 then continue // skip if no 0 here 
                    Rem if we get here then loop once more 
                    Exitloop = 0

                    map[x2,y2] = Num+1

                Next ii

            Endif

        Next x

        Next y

        Num=Num+1

    Endwhile

Endfunction 



If you run the program above then you should see the screen filled with numbers. Around number 
1 a higher number is shown and this goes on until the numbers reach the bounds of the screen.


Plane ground, 3d touch movement, cone mountains.





Setting up a simple 3d world with agk is not that hard. Here I created a large plane, which is 
basically a large flat surface. I then created a number of cones which act like mountains. These 
together form a classic 3d world. I added 2 buttons for moving the camera through this world.


Put the code below here in a new empty project below the usenewdefaultfonts(1) line.


Rem create a large ground 
P = createobjectplane(5000,5000)

Setobjectcolor(P,100,100,0,255)

Rotateobjectlocalx(P,90)


Rem create a number of cone objects and place then on the 
Rem plane at random locations. 
For i = 0 to 50

    Rem height of cone 
    H = random(90,190)

    Rem depth of cone 
    D = random(120,500)

    Createobjectplane(i,H,D,3)

    Setobjectposition(i,random(0,5000)-2500,H/2,random(0,5000)-2500)

    Local g as integer

    g = random(0,100)+50

    Setobjectcolor(i,g,g,g,255)

Next i


Rem add touchscreen joystick(left side) look around 
Addvirtualjoystick(1,15,85,20)

Rem add touchscreen joystick(right side) movement 
Addvirtualjoystick(2,85,85,20)




Setskyboxvisible(1)

Setcamerarange(1,1,4000)


Put the code below here in the main loop. This is below the do command and below the 
print(screenFPS()) line.


Rem look around with the left virtual joystick 
Rotatecameralocalx(1,getvirtualjoystick(1))


Rem keep x axis within certain bounds 
If getcameraanglex(1) > 50 then rotatecameralocalx(1,0-getvirtualjoysticky(1))

If getcameraanglex(1) < 50 then rotatecameralocalx(1,0-getvirtualjoysticky(1))


Rem look left and right. 
Rotatecameralocaly(1,getvirtualjoystickx(1))


Rem keep the camera upright 
Setcamerarotation(1,getcameraanglex(1),getcameraangley(1),0)


Rem move around with the right virtual joystick 
Movecameralocalz(1,0-getvirtualjoysticky(2))

Movecameralocalx(1,0-getvirtualjoystickx(2))

Rem keep the camera on the same height above the ground. 
Setcameraposition(1,getcamerax(1),getcameraz(1))


If everything went right and if you run the program then you wil be able to move through a 
primitive 3d world using onscreen controls. Experiment!


A chunk system example 

In the game minecraft there are really large worlds. There is no way that a computer can draw the 
entire map at once. So people talk about chunks that solves this. A chunk is like a piece of a 
puzzle. All the pieces connect to form a picture. In a game you would have those chunks around 
you forming the game map. When you move chunks that get to far away from you get removed 
and new chunks that get in range get created.

Below here there is a example of a crude chunk system. The example is 2d but it might show you 
enough for you to learn how something like this works. I based it on code that I use in my voxel 
world that I was working on.


First lets start with adding the first code. Place this in a new empty project below the line 
usenewdefaultfonts(1)


Type chunk

    Rem chunk x and y

    x as integer

    y as integer

    Rem location on the screen 
    sx as integer




    sy as integer

Endtype 
Rem create a list where we are going to 
Rem put the types(chunks) in. 
Global chunklist as chunk[]


Rem width of the chunk and height of the chunk 
Global chunkwidth = 16

Global chunkheight = 16

Rem position on the map we are on. 
Global px = 50

Global py = 50


Rem here we create text that we use to display the 
Rem chunk locations on the screen. 
Global t as integer[4,4]

For y=0 to 4

For x=0 to 4

    t[x,y] = createtext(“0”)

    Rem place in the center of the screen 
    Settextposition(t[4,4],x*chunkwidth+20,y*chunkheight+20)

Next x

Next y


Next we are going to have to add code into the main loop of our default empty project. This is 
below the do command and below the print(screenfps()) line.


Print(“touch the screen to scroll map”)


Rem here we read if the use touches the screen. 
Rem we change the position of the player. 
If getpointerstate()

    If getpointerx()<50// if screen touched on the left side 
        px=px-chunkwidth

    Else

        px=px+chunkwidth

    Endif

    If getpointery()<50

            py=py-chunkheight

        Else

            py=py+chunkheight

    Endif 
Endif 

Rem these are function calls. 
updatechunks()

drawchunks()


Below here we are going to place the last of the code. You can place functions on diffent locations 
but I tend to place them at the bottom of the file. Place the following lines below the line that has 
the loop command.


Rem this function has code that recreates every chunk every time it is called. 
Rem you could for instance also remove chunks and insert chunks. But here 



Rem we just erase the chunkarray. 
Function updatechunks()

    Rem get our current chunk location 
    cx=(px/chunkwidth)

    cy=(py/chunkheight)

    Rem erase every chunk 
    chunklist.lenght=0

    For y=-2 to 2

    For x=-2 to 2

        chunklist.insert(newchunk(cx+x,cy+y,x,y))

    Next x

    Next y

Endfunction 

Rem this function reads from the chunklist and 
Rem puts the information in the onscreen text. 
Function drawchunks()

    For i=0 to chunklist.length

        Rem in the onscreen text put the chunk tile locations. The player would be 
        Rem in the center one. 
        Settextstring(t[chunklist[i].sx+2,chunklist[i].sy+2],str(chunklist[i].x)+”,”+str(chunklist[i].y))

    Next i

Endfunction 

Rem this function creates a new instance of the chunk type 
Rem that we can insert into the chunk array list. 
Function newchunk(x1,y1,x2,y2)

    a as chunk

    Rem tile number, the printed text on the screen. 
    a.x= x1

    a.y= y1

    Rem text location 
    a.sx= x2

    a.sy= y2

Endfunction a //note the a being returned this way. 

If you are here and have put the code above inside agk then it should run. You can see numbers 
on the screen. Imagine the player being in the center on a part of the world and around him being 
more parts of the world. You can see only as far as the parts of the world numbered around you. 
When you move the world gets updated and the world gets changed around you.


Distance equation manhattan 

Sometimes you need to know the distance between two points. The manhattan method is one 
way to get the distance. Do not that there are more precise methods but this one is pretty easy 
and short.


Function distance(x1,y1,x2,y2)

    a = abs(x2-x1) + abs(y2-y1)

Endfunction a




The Random Bag 

Sometimes the random command is not good enough. You might want more of a certain number 
to be returned. Maybe because your sword has a magic effect to hit with max damage more 
often. To solve this you could create a array with a series of numbers and randomly select a value 
from this. You could have 3 values of 3 and 6 values of 9(max damage) You could also then 
remove this value from the array for other purposes.


Note : that below the code might not work  
If you type it into agk straight away. Read more 
Of this book to see where to place certain lines. 

Rem setup the array 
Dim bag[10] As Integer 

Rem this code would create random numbers 
Rem in the array. 
For i=0 to bag.Length

  bag[i] = Random(0,10)

Next 

Rem code that prints a value from the bag array on the screen. 
Print(bag[Random(0,bag.Length)])


Selection Lists 

When you program things you will need to know techniques to get things done quick and easy. 
One technique here is something I learned to get a value from a list. I had the situations where I 
had a monster traveling through the woods using the random obstacle avoidance method. This 
method lets a ai agent(other word for monster etc.) step in a random direction if there is an 
obstacle in his way. Not every position around him would be reachable so you can use the 
following technique. Basically I loaded the free positions around the player in a list and selected 1 
position to move to.


Rem Here we use a single array to simplify the example 
Local sel as integer[0] 

Rem Insert a couple of values into our list. 
sel.Insert(10)

sel.Insert(20)

sel.Insert(30)


Rem Print out one value from the list(array)

Print(sel[Random(0,sel.Length)])


Note : We could use 2 arrays(one for x and one for y) 
that contain the movement difference, so our monster 
could step either left, up, down or right. Maybe you  
could create some code yourself that does this.




Pattern movement 

In video games we move stuff around. One technique of moving things around is called pattern 
movement. We for instance have a array with instructions telling a dog in the game what to do. 
The instructions we give the dog could be “Move left, move left, sit”


Below is a simple example of how we can move a sprite around on the screen.


Rem Just above the main loop in a new empty project place these following 
Rem lines. This would be above the Do and Print(ScreenFPS()) lines. 

Rem here is our array that wil contain the instructions.

Dim instruct[] as String

Rem here we insert instructions.

instruct.Insert(“down”)

instruct.Insert(“down”)

instruct.Insert(“left”)

instruct.Insert(“left”)

instruct.Insert(“up”)

instruct.Insert(“up”)

instruct.Insert(”right”)

instruct.Insert(”right”)

Rem Here we create our sprite and set its size and position 
dog = CreateSprite(0)

SetSpriteSize(dog,10,10)

SetSpritePosition(dog,30,30)

Rem this variable contains the position in the instruction

Rem array. 0 is the first command(“down”) 

position = 0


Rem In the main loop place this following code. This would be in a new 
Rem empty project below the Do and Print(ScreenFPS()) lines.


Rem we wil read from the array at the current position. 
Select instruct[position]

  Case “up” // if in the array here is written “up” 
    Rem move the sprite up. 
    Setspritey(dog,getspritey(dog)-10)

  Endcase

  Case “down”

    Setspritey(dog,getspritey(dog)+10)

  Endcase

  Case “left”

    Setspritex(dog,getspritex(dog)-10)

  Endcase

  Case “right”

    Setspritex(dog,getspritex(dog)+10)

  Endcase

Endselect 

Rem Increase our position in the instruction array 
position = position + 1

Rem If we have no more instructions left the start back at 0. 
If position > instruct.length then position = 0 




Rem end of code 

Tip : patterns like used here could be used in 
more complex code like Genetic Algorithms. 
Where for instance patterns are randomly created 
and the most successful one(closest to destination) 
Would be used for creating new patterns with 
added random instructions and several mutations 
(Replacing instructions) 

Platformer jumping physics 

Agk comes with a whole set of physics commands. Here I have placed example code where one 
sprite acts as a player and another one acts as the floor. When the screen is touched the player 
jumps. The physics commands make everything look like a platformer. 

Rem Just above the main loop in a new empty project place these following 
Rem lines. This would be above the Do and Print(ScreenFPS()) lines. 

Player = createsprite(0)

Setspritesize(Player,16,16)

Setspritecolor(Player,255,255,0,255)

Setspriteoffset(Player,8,8)

Setspriteposition(Player,50,50)

Setspritephysicson(Player,2)

Setspritephysicscanrotate(Player,0)

Setspritephysicsfriction(Player,0)

Setspritephysicsrestitution(Player,0.1)


Block = createsprite(0) 
Setspritecolor(Block,255,0,0,255)

Setspritesize(Block,100,20)

Setspritephysicson(Block,1)

Setspritegroup(Block,1)

Setspriteposition(Block,0,80)


Setphysicsgravity(0,10) 

Rem Place the code below inside the main game loop.  
Rem That is below the Do and Print(ScreenFPS()) 

Raydown = 
physicsraycastgroup(1,getspritexbyoffset(Player),getspriteybyoffset(Player),getspritexbyoffse
t(Player),getspriteybyoffsety(Player)+9) 

Setspritephysicsvelocity(Player,getspritephysicsvelocity(Player)) 

Rem Jump by touch 
If getpointerpressed() = 1 



If Raydown = 1 
Setspritephysicsvelocity(Player,getspritephysicsvelocity(Player),-60) 
Endif 
Endif 

Rem the code ends here 

If all is right then you would be able to see two sprites on the screen. Touch the screen to make 
the player sprite jump.


